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The number  of  structural  parameters  measurable  
from a fiber diffraction pattern ultimately depends  
on the choice of  e, the amoun t  of  noise amplif ication 
that can be tolerated in estimation of layer-line 
intensities from raw data.  That  number  depends  
directly on the signal-to-noise ratio of  the original 
data.  In a previous analysis (Makowski ,  1978), the 
intensities along layer lines were plotted as a function 
of  distance from the meridian.  Near  the deconvol- 
ution limit, the noise in these est imated layer lines 
was greatly amplified. However,  experience has indi- 
cated that this is not always the case and that system- 
atic errors may be amplified and that this 
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Fig. 4. The total number of structural parameters derivable from 
fiber dittraction patterns from tobacco mosaic virus (TMV) and 
filamentous bacteriophage Pfl as a function of resolution. For 
this calculation, tr was set to 1.4 ° for both specimens. The larger 
number of parameters measurable for TMV is largely a result 
of its larger diameter (180 A compared to 65 A for Pfl). 

amplif ication does not vary greatly with r a d i u s - i t  
does not result in an apparen t  increase in noise levels 
along a layer line. In the analysis of  most fiber diffrac- 
tion pat terns using angular  deconvolut ion,  we have 
found that using a value of  e = 3 results in acceptable  
results, but this may not always be the case. A compar-  
able value is likely to be appropr ia te  for estimates of  
structural parameters  beyond  the deconvolut ion limit. 

The analysis presented here does not directly 
address  the question of  how to use the measurable  
structural parameters  beyond the deconvolut ion limit. 
Equat ion (6) represents an indeterminant  set of  
equat ions for the layer-line intensities beyond the 
deconvolut ion limit. The measurable  structural  par- 
ameters represent  a partial  set of  data,  from which 
intensities cannot  be completely derived. However,  
they also represent  a set of  constraints on the structure 
of  a helical assembly that with proper  statistical tests 
can be used to constrain or refine (Tibbitts et al., 
1988) the structure of  a diffracting unit. The rapidly 
increasing availability of  comput ing  power  will pro- 
vide the means  for using these data.  This paper  pro- 
vides a quanti tat ive estimate of  the amount  of  infor- 
mation contained in the observable data  beyond the 
deconvolut ion limit. 

The au thor  thanks M. Gong  for the use of  the 
diffraction pat tern in Fig. 1. This work is suppor ted  
by a grant from the Nat ional  Science Foundat ion .  
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Abstract  

A phase-ref inement  method  based on Sayre 's  squar- 
ing equat ion and on a suggestion made  by Hoppe  [Z. 
Kristallogr. (1963), 118, 121-126] is presented.  It takes 

advantage  of  a lot of  informat ion initially known 
about  a crystal structure such as all the measured  
s tructure-factor  magni tudes  and the atomicity con- 
straint implicit in Sayre 's  equation.  The method  
assumes that any squared structure factor [F(H)[ 2 can 
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be approximately expressed in terms of the largest 
structure factors. This allows the quantity M =  

Fob s -  Fcalc ) to be expressed as a function of E .  w( 2 2 2 
the phases of the largest F's only, whereas the H 
summation extends over all measured reflections. The 
refined phases of the largest F's can then be found 
by least-squares minimization of M. The viability of 
the method is tested on a one-dimensional example. 
The physical meaning of minimizing M can be best 
illustrated by expressing M in Patterson space, i.e. 
in the form of the integral Vv S (Po- Pc)2d V, where 
Po is the sharpened observed Patterson function and 
Pc is the calculated one expressed as a function of 
the phases of the largest F's, taking into consideration 
the atomicity condition. The better the agreement 
between Po and Pc over the whole unit cell, the smaller 
will be the integral and consequently M. 

1. Introduction 

Nowadays, multisolution direct methods (Germain 
& Woolfson, 1968) based on the refinement of initially 
random sets of phases constitute the most widespread 
way of solving small-crystal structures. One attraction 
of these methods is that the refinement is done in 
reciprocal space and, therefore, no interpretation of 
Fourier maps is in general necessary during the 
refinement process. 

Historically, the first method of refining phases was 
proposed by Hoppe (1963). In this method, the 
refined phases are found through least-squares 
minimization of the quantity 

~, w(H)[F(H)-IO(H) E F~(H')Fc(H-H')I] 2 (1) 
H H '  

Following an alternative method, Krabbendam & 
Kroon (1971) and Sayre (1972) elaborated phase- 
refinement procedures based on expressions exploit- 
ing the complete information of Sayre's equation. 
Sayre proposed the least-squares solution of the 
equations 

rAH)=  0(H) Z ~ ( H ' ) ~ ( H -  H') (3) 
H'  

by minimizing the expression 

Y~ w(H)IF(H) exp iq~c(H) 
H 

- 0 ( H )  E Fc(H')F,.(H- H')I 2 (4) 
H'  

as a function of the phases. One argument aaauced 
by the author for preferring minimization of (4) 
instead of ( 1 ) is that (4) really expresses two equations 
relating the real and imaginary parts of the two sides 
of (3), which is useful in producing a considerable 
degree of overdetermination of q~(H). The utility of 
this method was shown by extending the phases of 
the small protein rubredoxin from 2.5 to 1.5 ]k resol- 
ution (Sayre, 1974). It should be noted, however, that 
~oc(H) in (4) is derived from 0(H)~n '  F¢(H')F~(H- 
H'), i.e. it is not a measured quantity. 

The present work explores a suggestion made by 
Hoppe (1963) that the overdetermination problem 
present in (1) may be solved by assuming that any 
structure factor H can be approximately expressed 
as a function of the large structure factors alone. The 
refinement of phases can then be done by minimizing 
the quantity 

Y. w(H) F(H)2-10(H) ~ Fc(h')F~(H-h')l 2 , (5) 
H h' 

with 

0(H) = f ( H ) / Z f ( H ' ) f ( H - H ' ) ,  (2) 
H'  

where F(H) is the observed structure-factor magni- 
tude of the H reflection, F~(H')= F(H')exp iq~(H') 
the calculated structure factor of H' and f ( H )  the 
atomic scattering factor. As stated by the author, one 
of the drawbacks of the method is that the number 
of unknowns is of the same order as the number of 
observations. Consequently, the system is only 
slightly overdetermined and, in fact, there have been 
no practical applications of the method. 

Later, Karle & Karle (1966) developed a phase- 
refinement method based on the tangent formula 
(Karle & Hauptman, 1956) that circumvents this 
difficulty. The tangent formula can be improved by 
including additional information, for example, nega- 
tive quartets (Schenk, 1973), weak E's (Debaer- 
demaeker, Tate & Woolfson, 1985) or minimum inter- 
atomic separation (Rius & Miravitlles, 1989). 

where Fc(h') and Fc(H-h ' )  belong to the set of large 
F's. In this way, only the phases of the large F's need 
be refined, so that the resulting system is greatly 
overdetermined. This method is valid as long as 
Sayre's equation holds. 

2. Theory 

The method supposes that any structure factor F(H) 
can be approximately expressed in terms of the n 
largest ones by means of Sayre's (1952) equation 

F(H) -~ 0(H) E F(h ' )F (H-  h'). (6) 
h' 

If the atomic peaks are assumed spherical and 
Gaussian with width or, then 0(H) can be approxi- 
mated by 

0(H)m K exp (-- ¢r2ty2sh) ---- Kv(H) (7) 

s .  = [2 sin OH]/A (8) 
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with K a scaling factor sensitive to the resolution and 
to the number of selected large F's. After substitution 
of (7) in (6), it follows that 

F(H) ~ g v ( H )  ~ F ( h ' ) F ( H -  h'). (9) 
h '  

If the phases ~¢(h~) ( i =  1 to n) of the largest F's  
(henceforth represented collectively by qb) as well as 
K and cr are known, then (9) allows direct estimation 
of any structure factor H. 

Next, let the function M be defined as 

M(qb, K, t r ) = ~  w(H)j(H)[F(H)2-F,.(H)2] 2 (10) 
t l  

with H representing the m measured reflections 
belonging to one asymmetric unit of the reciprocal 
space, j (H)  the corresponding multiplicities and 
w(H) the associated weighting factors and where 

F,.(H) = A,.(H) + iB,.(H) (11) 

= K,.v,.(H) E I F ( h ' ) F ( H -  h')l 
h' 

x {cos [ ~o¢(h') + ~0,.(H - h ' ) ]  

+isin[~o,.(h')+~,.(H-h')]}. (12) 

M will be a minimum for the correct values of the 
parameters q~, K and cr and, since rn >> n, it can be 
minimized by means of a least-squares procedure [see 
e.g. Rollet (1970) for a fairly complete description of 
the least-squares method]. The application of the 
least-squares method to the minimization of M 
requires, however, the functional form of i f ( H )  2 to  
be linear in the parameters. Since this is not the case, 
F(H)  2 must be first approximated by a truncated 
Taylor series. The value of F ( H )  2 at  K,. + AK, o% + Ao- 
and G.(h , )+A~(h, )  (i = 1 to n) is then given by 

F,.(H) 2 ,ew - = F~(H) 2 +[OF~(H)2/OK] AK 

+[3F<.(H)2/ao']Atr 

+X[OF<.(H)2/a~c(h,)]A~p(h,). (13) 
i 

At the minimum, the derivatives of M with respect 
to the parameters have to be zero. After introduction 
of (13) in each derivative expression, one equation 
of the following type is found for each parameter to 
be refined: 

OM/O~p(h,) = X w(H) j (H)  / F(H)  2 -  F,.(H) 2 
H [ 

-[oF,.(H)2/OK ]AK -[oF,.(H)2/Oo]Ao 

-~, [3fc(Ul2/o~p(hj)]A~p(hj)} 
J 

x 0 F~ ( H ) 2 / a ~ ( h , )  = 0. (14) 

B y  rearrangement of (14), the normal equation for 

~(h~) is obtained: 

w(H)j(H)[oF,,(H)2/OK][OF,.(H)2/O~c(hi)]AK 
H 

+ ~ w(H)j(H)[OFc(H)2/Oo ] 
| !  

X [3 F~.(H)2/O~ (h,)]Ao" 

+ ~, Y. w(H) j (H ) [aF , . (H )2 /a~p (h j ) ]  
j ! t  

x [ 0 F~ ( H)2/a ~p (h,) ] A~p (hj) 

= ~ w(H) j (H)[  F(H)  2 -  F,.(H) 2] 
H 

x [0 F,.(H)2/0~0(hi)]. (15) 

There is one normal equation of this type for each 
parameter, so that a system with an equal number of 
equations and unknowns results. The solution of this 
system for AK, Air and the 3~0(hi) [i = 1 to n] yields 
the new estimates of the parameters. Since (13) is 
only an approximation, the refinement process must 
be repeated until successive cycles produce insig- 
nificant changes of the parameters. 

The derivatives of F,.(H) 2 with respect to the 
parameters are found to be: 

(a) for the scaling factor K 

OF,.(H)2/OK = 2F~.(H)2/g,.; (16) 

(b) for the width tr of the Gaussian atomic peaks 

0 F , . ( H ) 2 / 0 0  = -47r2~rcs2Fc(H)2; (17) 

(c) for the phases ~(h,) of the largest structure factors 

OFc(H)2/O~(h,)  = 2{A,.(H)[aA,.(H)/a~o(h,)] 

+ Bc(H)[aB,.(H)/a~o(h,)]} (18) 

where, for acentric reflections, 

oAc(H)/&p(h,) 

= 2Kcv¢ (H)F (h , )  Y. { - F ( H -  h,R~) 
s 

x sin [¢ , . (K )  + q~,.(H - h,R.,) - 27rh,t.~] 

+ F (H  + h~R~) 

× sin [~oc(-h,) + ~,.(H + h,R,) + 27rhA,]} (19) 

and, similarly, 

3B,.(H)/3~o(h,) 

= 2K,.vc(H)F(h,) ~ { F ( H -  h,R.~) 
s 

x cos [~oc(h~) + ~oc(H - h,R~) - 27rhit.~] 

- F(H + h~R~) 

xcos  [~oc(-h,) + ~o,.(H + h~R.~) + 27rhA~]} (20) 

with R.s being the rotation matrix and t.,. the translation 
vector of the symmetry operation s. 
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The physical meaning of minimizing (10) can be 
best understood by expressing M in Patterson space: 

M =  V, ,J[Po(u)-Pc(u,  crp, K,o-)]2du. (21)  

Table 1. Results of  the least-squares refinement o f  
initially random phases for the one-dimensional 
example ( M P H E  = mean phase error with e.s.d.'s in 

parentheses; i = initial, f = final) 

Po is the sharpened observed Patterson function Trial 
n o .  

(Patterson, 1935) computed with coefficients 
1 

[w(H)]l/2Fo(H) 2 and Pc is the calculated one 2 
expressed as a function of the phases of the largest 3 
F's ,  taking into consideration the atomicity condition. 4 5 
Obviously, the better the agreement between Po and 6 
Pc over the unit cell, the smaller will be the integral 7 

8 
in (21). Notice that the weights w(H) determine the 9 
degree of sharpening of the Patterson function. Jones, 10 
Marsh & Richards (1965) described a weighting func- 
tion useful for obtaining rapid convergence of M in 
the initial least-squares refinements of atomic param- 
eters consisting in giving each observation a weight 
w(H)oc l / f ( H )  2. The similar weighting function 
w(H)oc l / f  (H) 3/2 was employed in the test calcula- 
tions given in § 3. 

Instead of (10), the function 

P=~, w'(H)[F(H)-Fc(H)] 2 (22) 
H 

could be alternatively minimized, i.e. the amplitudes 
rather than the intensities of the structure factors are 
used. This leads to a set of normal equations similar 
to (15) except that the product w(H) j (H)  is replaced 
by w'(H), [ F ( H ) 2 - F c ( H )  2] by [ F ( H ) - F c ( H ) ] ,  
OFc(H)2/OK by [2Fc(H)]-IOFc(H)2/O K, OFc(H)2/Otr 
by [2Fc(H)]-'OFc(H)2/Oo • and aFc(H)2/aq~(hi) by 
[2Fc(H)]-~aFc(H)2/aq~(hi). There are, however, good 
reasons (Rollet, McKinlay & Haigh, 1976) for prefer- 
ring minimization of (10) instead of (22) when the 
errors in the initial estimates of the parameters are 
large. 
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Fig .  1. F i n a l  F o u r i e r  m a p  f o r  t r i a l  5 c o m p u t e d  w i t h  t h e  e s t i m a t e s  

o f  t h e  s t r u c t u r e  f a c t o r s  o b t a i n e d  a f t e r  i n t r o d u c i n g  t h e  r e f i n e d  

phases of the large F's in (9). H = height of the Fourier synthesis 
in arbitrary units; x = fractional coordinate. 

Number of M i My R i Rf MPHE 
cycles (%) (%) (%) (%) (°) 

4 47.1 5"8 53'3 22"6 30 (18) 
5 54"0 5"0 44.7 21"0 29(15)  
2 45-1 14.0 48"1 42.2 48 (47) 
4 53"2 5"6 40"6 29"0 28 (19) 
5 62.1 4.0 48"6 26-4 28 (15) 
5 66"2 3"7 42.1 25"2 23 (22) 
5 88"8 4.7 45"4 21 "2 26 (14) 
5 66-3 4"9 37"8 21 "8 19 (20) 
5 107"2 5"8 55"3 21"8 29(15)  
2 44-5 17"4 46"0 36"2 55 (52) 

r 

Table 2. Details of  the least-squares phase refinement 
for trial 5; * = after a shift of 0.54 A, to place the origin 

on an inversion centre of  the structure 

I n i t i a l  a n d  f ina l  r e f i n e d  v a l u e s  f o r  Kc :  0 . 0 7 5 0 6  a n d  0 - 0 7 5 0 8 ;  f o r  

o,c: 0 . 2 8  a n d  0 . 2 0  A,. 

~P(h)ini (P(h)r*ef 
H [w(H)]  t/2 Fob ̀  Fcalc (o) (o) 

0 1.00 5.66 5.66 0 fixed 0 
I 1.00 1.00 1.08 149 - 4 3  
2 1-01 0.41 0-49 - - 
3 1.03 0-48 0.63 - - 
4 1.05 1.28 1.16 - 1 1 8  163 
5 1.08 0.35 0.04 - - 
6 1.11 1.78 1.83 -51  - 1 5 9  
7 1.15 0.54 0.15 - - 
8 1.20 1.41 1.27 145 - 2 4  
9 1.26 2.80 2.68 130 fixed 180 

10 1.34 1.29 1.24 - 1 4 5  134 
11 1-42 0.48 0.29 - - 
12 1.52 0.64 0.19 - - 
13 1 "63 0"52 0'53 - - 
14 1.77 0.38 0.11 - - 
15 1"92 1"81 1 "66 6 - 3 0  
16 2.10 0"77 0"72 - 1 4 2  46 
17 2"31 0"72 0"74 43 - 1 5 5  
18 2.56 0"38 0-36 - - 
19 2"85 0"05 0"14 - - 
20 3"19 0"07 0"16 - - 
21 3"60 0"10 0"23 - - 
22 4"07 0"03 0" 13 - - 
23 4"64 0-17 0"24 - - 
24 5"32 0"37 0"38 - - 
25 6" 13 0"36 0"26 
26 7.11 0"03 0.09 

3. Test calculations 

A one-dimensional equal-atom structure (Sayre, 
1952) consisting of Gaussian atoms of width or= 
0.28 A at x = +0.113, ±0.234, +0.361 and ±0.438 has 
been selected for testing the present method (Fig. 1). 
Although the structure belongs to line group P1, the 
reflections are treated as acentric. By making Fmin = 
0"71 (Smax= l ' 30~- I ) ,  ten large F's  were found 
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[ including the F(0) term calculated from the known 
chemical  composit ion].  This represents ten param- 
eters to be refined (eight phases + K  + or) from 27 
observations. The initial estimate of K,. was derived 
from 

g,.= F(O)/Y~ F(h') 2. (23) 
h'  

Equation (23) assumes that the F(h') are on an 
absolute scale. 

Table 1 summarizes  the results of the refinement 
of  random phases for ten consecutive trials. To obtain 

an addi t ional  figure of merit, the R value was also 
computed at the end of each refinement cycle. The 
refinement process stopped when further minimi-  
zation of M produced no decrease of R. Inspection 
of Table 1 indicates that most trials (eight out of  ten) 
converged in four-five cycles. Trial 5 has been selec- 
ted to show the refinement process in more detail. 
Table 2 lists the results of  the refinement,  Fig. 2 
illustrates the evolution of M and R as functions of 
the number  of cycles and Fig. 1 reproduces the final 
Fourier  map  computed with the estimates of the struc- 
ture factors obtained from (9). 
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Fig. 2. M (solid line) and R (dashed line) as a function of the 

number of cycles of refinement for trial 5. 
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Abstract 

The resolution functions for various powder  diffrac- 
tometers using paral le l -beam geometry are calculated. 
These diffractometers consist of  monochromator ,  
sample and eventually a post-specimen analyser.  The 
theory is thus similar  to that of  two- or three-axis 

0108-7673/91 / 050571-07503.00 

diffractometers. Special attention has to be given to 
the different diffraction mechan isms  occurring at per- 
fect crystals, synthetic mult i layers  or mosaic crystals. 
Resolution functions for all three types of  mono- 
chromators  are presented. Exper iments  performed at 
HASYLAB and other laboratories show good agree- 
ment with theory. 

O 1991 International Union of Crystallography 


